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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if 
graphs are used to find a solution, you should sketch these as part of your answer.  Where an answer 
is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
You are therefore advised to show all working.

1.	 [Maximum mark:  13]

	 The binary operation multiplication modulo 10, denoted by  ×10 , is defined on the set  
T = {2 , 4 , 6 , 8}  and represented in the following Cayley table.

×10 2 4 6 8
2 4 8 2 6
4 8 6 4 2
6 2 4 6 8
8 6 2 8 4

	 (a)	 Show that  {T , ×10}  is a group.  (You may assume associativity.) [4]

	 (b)	 By making reference to the Cayley table, explain why  T  is Abelian. [1]

	 (c)	 (i)	 Find the order of each element of  {T , ×10} .

		  (ii)	 Hence show that  {T , ×10}  is cyclic and write down all its generators. [6]

	 The binary operation multiplication modulo 10, denoted by  ×10 , is defined on the set   
V = {1 , 3 , 5 , 7 , 9} .

	 (d)	 Show that  {V , ×10}  is not a group. [2]

2.	 [Maximum mark:  8]

	 (a)	 Consider the sets  A = {1 , 3 , 5 , 7 , 9} , B = {2 , 3 , 5 , 7 , 11}  and  C = {1 , 3 , 7 , 15 , 31} .

		  (i)	 Find  (A ∪ B) ∩ (A ∪ C) .

		  (ii)	 Verify that  A \ C ≠ C \ A . [5]

	 Let  S  be a set containing  n  elements where  n ∈  .

	 (b)	 Show that  S  has  2n  subsets. [3]
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3.	 [Maximum mark:  8]

	 The relation  R  is defined such that  xRy  if and only if  | x | + | y | = | x + y |  for  x , y ∈  .

	 (a)	 Show that  R  is

		  (i)	 reflexive;

		  (ii)	 symmetric. [4]

	 (b)	 Show, by means of an example, that  R  is not transitive. [4]

4.	 [Maximum mark:  12]

	 The set of all permutations of the list of the integers  1 , 2 , 3 , 4  is a group,  S4 , under the 
operation of function composition.

	 (a)	 Determine the order of  S4 . [2]

	 In the group  S4  let p
1

1 2 3 4

2 3 1 4
=








  and p

2

1 2 3 4

2 1 3 4
=








 .

	 (b)	 Find the proper subgroup  H  of order 6 containing  p1 , p2  and their compositions.  
Express each element of  H  in cycle form. [5]

	 Let  f : S4 → S4  be defined by  f ( p) = p  p  for  p ∈ S4 .

	 (c)	 Using  p1  and  p2 , explain why  f  is not a homomorphism. [5]

5.	 [Maximum mark:  9]

	 The function  f :  →   is defined by  f (n) = n + (-1)n .

	 (a)	 Prove that  f   f  is the identity function. [6]

	 (b)	 Show that

		  (i)	 f  is injective;

		  (ii)	 f  is surjective. [3]
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